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Database search programs are essential tools for identi-
fying peptides via mass spectrometry (MS) in shotgun
proteomics. Simultaneously achieving high sensitivity and
high specificity during a database search is crucial for
improving proteome coverage. Here we present JUMP, a
new hybrid database search program that generates
amino acid tags and ranks peptide spectrum matches
(PSMs) by an integrated score from the tags and pattern
matching. In a typical run of liquid chromatography cou-
pled with high-resolution tandem MS, more than 95% of
MS/MS spectra can generate at least one tag, whereas
the remaining spectra are usually too poor to derive gen-
uine PSMs. To enhance search sensitivity, the JUMP pro-
gram enables the use of tags as short as one amino acid.
Using a target-decoy strategy, we compared JUMP with
other programs (e.g. SEQUEST, Mascot, PEAKS DB, and
InsPecT) in the analysis of multiple datasets and found
that JUMP outperformed these preexisting programs.
JUMP also permitted the analysis of multiple co-frag-
mented peptides from “mixture spectra” to further in-
crease PSMs. In addition, JUMP-derived tags allowed
partial de novo sequencing and facilitated the unambigu-
ous assignment of modified residues. In summary, JUMP
is an effective database search algorithm complementary
to current search programs. Molecular & Cellular Pro-
teomics 13: 10.1074/mcp.0114.039586, 3663-3673, 2014.

Peptide identification by tandem mass spectra is a critical
step in mass spectrometry (MS)-based’ proteomics (1). Nu-
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merous computational algorithms and software tools have
been developed for this purpose (2-6). These algorithms can
be classified into three categories: (i) pattern-based database
search, (i) de novo sequencing, and (iii) hybrid search that
combines database search and de novo sequencing. With the
continuous development of high-performance liquid chroma-
tography and high-resolution mass spectrometers, it is now
possible to analyze almost all protein components in mam-
malian cells (7). In contrast to rapid data collection, it remains
a challenge to extract accurate information from the raw data
to identify peptides with low false positive rates (specificity)
and minimal false negatives (sensitivity) (8).

Database search methods usually assign peptide se-
quences by comparing MS/MS spectra to theoretical peptide
spectra predicted from a protein database, as exemplified in
SEQUEST (9), Mascot (10), OMSSA (11), X!Tandem (12),
Spectrum Mill (13), ProteinProspector (14), MyriMatch (15),
Crux (16), MS-GFDB (17), Andromeda (18), BaMS? (19), and
Morpheus (20). Some other programs, such as SpectraST (21)
and Pepitome (22), utilize a spectral library composed of
experimentally identified and validated MS/MS spectra. These
methods use a variety of scoring algorithms to rank potential
peptide spectrum matches (PSMs) and select the top hit as a
putative PSM. However, not all PSMs are correctly assigned.
For example, false peptides may be assigned to MS/MS
spectra with numerous noisy peaks and poor fragmentation
patterns. If the samples contain unknown protein modifica-
tions, mutations, and contaminants, the related MS/MS spec-
tra also result in false positives, as their corresponding pep-
tides are not in the database. Other false positives may be
generated simply by random matches. Therefore, it is of im-
portance to remove these false PSMs to improve dataset
quality. One common approach is to filter putative PSMs to
achieve a final list with a predefined false discovery rate (FDR)
via a target-decoy strategy, in which decoy proteins are
merged with target proteins in the same database for estimat-
ing false PSMs (23-26). However, the true and false PSMs are
not always distinguishable based on matching scores. It is a
problem to set up an appropriate score threshold to achieve
maximal sensitivity and high specificity (13, 27, 28).

Molecular & Cellular Proteomics 13.12

3663



JUMP Database Search Engine

De novo methods, including Lutefisk (29), PEAKS (30),
NovoHMM (31), PepNovo (32), pNovo (33), Vonovo (34), and
UniNovo (35), identify peptide sequences directly from
MS/MS spectra. These methods can be used to derive novel
peptides and post-translational modifications without a data-
base, which is useful, especially when the related genome is
not sequenced. High-resolution MS/MS spectra greatly facil-
itate the generation of peptide sequences in these de novo
methods. However, because MS/MS fragmentation cannot
always produce all predicted product ions, only a portion of
collected MS/MS spectra have sufficient quality to extract
partial or full peptide sequences, leading to lower sensitivity
than achieved with the database search methods.

To improve the sensitivity of the de novo methods, a hybrid
approach has been proposed to integrate peptide sequence
tags into PSM scoring during database searches (36). Numer-
ous software packages have been developed, such as
GutenTag (37), InsPecT (38), Byonic (39), DirecTag (40), and
PEAKS DB (41). These methods use peptide tag sequences to
filter a protein database, followed by error-tolerant database
searching. One restriction in most of these algorithms is the
requirement of a minimum tag length of three amino acids for
matching protein sequences in the database. This restriction
reduces the sensitivity of the database search, because it
filters out some high-quality spectra in which consecutive
tags cannot be generated.

In this paper, we describe JUMP, a novel tag-based hybrid
algorithm for peptide identification. The program is optimized
to balance sensitivity and specificity during tag derivation and
MS/MS pattern matching. JUMP can use all potential se-
quence tags, including tags consisting of only one amino acid.
When we compared its performance to that of two widely
used search algorithms, SEQUEST and Mascot, JUMP iden-
tified ~30% more PSMs at the same FDR threshold. In addi-
tion, the program provides two additional features: (i) using
tag sequences to improve modification site assignment, and
(i) analyzing co-fragmented peptides from mixture MS/MS
spectra.

EXPERIMENTAL PROCEDURES

JUMP is a database search algorithm (version 1.0.55) used to
convert tandem MS raw files to a list of peptides and proteins. The
software architecture is illustrated in Fig. 1, and a detailed scheme is
shown in supplemental Fig. S1. JUMP was written in Perl via a
modular approach that can be readily edited for further improvement.
The program was also designed for high-performance parallel com-
puting systems. JUMP source codes and detailed documents are
freely available at the Peng Lab website.

Preprocessing of Precursor lons—For high-resolution MS data, the
precursor ion in MS scans is analyzed to determine its charge state
and monoisotopic mass. Three steps are performed: (i) JUMP defines
the precursor ion in the MS scan preceding each MS/MS spectrum
when the data are collected via automated data-dependent acquisi-
tion. (i) The charge state is computed by comparing the precursor ion
peak to all other peaks within one mass unit window. If there is no
isotopic peak that can be used to interpret the charge state, the
program assigns two most common charge states (+2 and +3) to the

precursor ion, which allows the algorithm to determine the appropri-
ate charge state by means of PSM scoring. (i) To identify the
monoisotopic mass, JUMP first constructs a theoretical isotopic pat-
tern based on the precursor ion mass and then uses the theoretical
pattern to designate the monoisotopic peak in the MS scan.

Preprocessing of MS/MS Spectra—JUMP deconvolutes multiple
charged peaks and isotope clusters, removes background noise, and
normalizes the intensity of all peaks in a tandem MS spectrum. (i) The
intact precursor ion and its related neutral loss peaks (e.g. H,O or
NH;) are removed. (i) The charge state and monoisotopic mass of
fragment ions are identified as described above. In high-resolution
MS/MS scans (e.g. Orbitrap), the isotopic peaks and differently
charged peaks of the same product ion are merged with the monoiso-
topic peak of a singly charged peak, and their intensities are summed,
assuming that ion intensity is proportional to charge state. (i) The
program filters weak peaks to reduce noise. In each window of 100
m/z (Fig. 2), the top peaks (e.g. n = 6) are retained, and the number
of peaks can be edited by users. (iv) As different product ions are not
transferred and detected by MS at the same efficiency over the full
m/z range, the program normalizes peak intensity in each 100 m/z
window using the equation

M/ = M; X SP/SP; X (1 — 0.01 X Ry,) (Eq. 1)

where M/ is the normalized intensity of peak i, M; is its original
intensity, SP is the strongest peak intensity in the entire spectrum,
and SP; is the strongest peak intensity in the 100 m/z window con-
taining peak i. To avoid equal intensity of peaks, all windows are
ranked according to their strongest peak intensities, and the rank for
each window (R,,,) is implemented in the normalization.

Tag Generation and Scoring—To extract all potential tag se-
quences from an MS/MS spectrum, JUMP first labels pairs of peaks
that have mass difference of one specific residue. These peak pairs
are linked together to construct long tag sequences with flanking
masses. The tags may be generated from either N-terminal fragments
(e.g. b ions) or C-terminal fragments (e.g. y ions). The program recur-
sively enumerates all possible tags from one spectrum and then sorts
these tags according to any of the three ranking methods: tag inten-
sity-based Wilcoxon rank sum test, tag position-based hypergeomet-
ric test, or a combined method of the two algorithms.

The Wilcoxon rank sum test generates a p value for each tag based
on whether there is significant difference in intensities between the
tag-corresponding peaks and the remaining peaks in an MS/MS
spectrum. The Wilcoxon rank sum test was previously used in the
DirecTag program (40). For example, if a tag is derived from the 1st,
4th, 5th, 11th, and 18th peaks in a spectrum consisting of 50 peaks,
the rank sum of the tag is 39, corresponding to a p value of 0.001. The
p value is converted to a tag E (expectation) score (E,,) that is equal to
—log10 of the p value. Tags generated from strong peaks are more
likely to be authentic and are thus scored better than those from weak
peaks. In contrast to the Wilcoxon rank sum test, which covers the
intensities of all ions in a full spectrum, the hypergeometric test
produces a p value based on the occurrence probability of tag-
corresponding peaks within a local range.

,71 n— I’h
m)\k—m
n
k
where n is all possible ion locations, calculated as the mass range of
the tag divided by the mass tolerance; k is the total number of
theoretical product ions of this tag; n, is the number of detected

product ions within the local mass range; and m is the number of
matched product ions for generating the tag. In general, long tags are

p= (Eq. 2)
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associated with low p values. Similarly, the p values are converted to
an E score (E,).

We propose a combining score (E,.) based on the intensity (“rank”,
E,,) and the position of tags (“hyper”, E,;,). To compare and combine
these two scores in the same scale, JUMP standardizes the scores to
a 0-1 range as follows:

Ei - Emin

Ei N Emax - Emin

(Eqa.3)
where E;' is a standardized E score of the ith tag from one MS/MS
spectrum, E; is either the rank or the hyper E score before standard-
ization, and E,,,;, and E,,,,, are the minimal and maximal E scores of all
tags generated from the same spectrum, respectively. For each tag,
JUMP generates a standardized rank score (E},) and a standardized
“hyper” score (E},) to calculate its combined score (E).

Ei = (E; + Ep)/2 (Eq. 4)

The combined, standardized E score (E;,) in the 0-1 range is
converted back to an E score (E,.) in the hyper score (E,,) scale, as the
tag E score is also merged with hypergeometric test scores during
peptide matching (see below).

Etc = En; X (Ethfmax - Ethfmin) + Ethfmin (Eq 5)

Finally, the tags from the same spectrum are ranked by the com-
bined scores (E,.). The users can define how many top-ranked tags
are selected for a database search.

Database Indexing—To rapidly retrieve candidate peptides from a
protein database, JUMP generates three indexed files: protein index,
peptide index, and mass index (supplemental Fig. S2). Decoy proteins
are generated by reversing target protein sequences and switching
Arg and Lys residues with the preceding amino acid (42). Theoretical
peptides are derived from protein sequences according to the spec-
ified mass range, enzymatic digestion, miscleavage sites, and static
modifications and are then sorted by mass for storage. The search for
dynamic modifications is programmed separately, as the peptide
number exponentially increases with multiple dynamic modifications.
For instance, in a phosphoproteome study of triple SILAC labeling,
one may simultaneously search for eight dynamic modifications: Met
oxidation; Ser, Thr, and Tyr phosphorylation; two Lys modifications;
and two Arg modifications. A number of strategies are employed to
speed up the search. (i) All peptide masses are scaled by a factor of
1000 to remove non-integer mass, and the factor is adjustable, de-
pending on mass tolerance. (i) The program uses indexed files. (iii)
The binary search algorithm is used to retrieve mass, peptide, and
protein in the index files. (iv) The maximal modification number in one
peptide is six in the current version.

Database Searching and Peptide Scoring—JUMP initially retrieves
candidate peptides based on precursor ion mass and then filters the
peptides by top-ranked tag sequences and flanking masses. While
the isobaric residues Leu and lle are exchangeable in the tags, the
summed mass of two adjacent residues may be isobaric to that of a
single residue within mass tolerance. The program takes into account
all possible five isobaric cases: Gly-Gly and Asn, Gly-Ala and Gin,
Gly-Val and Arg, Gly-Glu and Trp, and Ala-Asp and Trp. Peptide
candidates that pass the tag-filtering step are subjected to peptide
scoring.

Peptide scoring frequently relies on probability models (10), such
as the Poisson distribution (11), the binomial distribution (18), and the
hypergeometric test (15, 43). We used the hypergeometric test and
the Wilcoxon rank sum test to compare theoretical product ions (e.g.
b and y ions) to the detected MS/MS ions, similar to the computation
of the hypergeometric test tag hyper score (E,,) and tag rank score
(E;). These two tests generate the peptide hyper E score (E,;,) and

rank E score (E,,). The peptide E score (E,) is then calculated by
combining these two scores (E,, + E,,). Then JUMP generates a J
score to rank the identified peptides, which integrates the tag E score
(E;) and the peptide E score (E,).

L/score = Etc + Epc (Eq 6)

Like the SEQUEST program, JUMP generates a & correlation score
(dJ,) to measure the distance between the best J score (Jgooreq) @and
the second J score (Jgeqren) from the same MS/MS spectrum.

dJn = (Jscore‘l - JscoreZ)/Jscore1 (Eq 7)

The target-decoy strategy is commonly used to estimate global
FDRs in protein identification (23—-26) and to derive individual g values
associated with PSMs (44). The FDR is calculated as the ratio be-
tween the numbers of decoy and target matches (45, 46). The JUMP
program also provides the g value for each PSM based on this
strategy.

Software Input and Output—JUMP processes MS data in either
raw or mzXML format. The raw files are converted to mzXML files by
free software such as ReAdW or msConvert. JUMP generates pep-
XML files for post-search filtering or integration with other software. In
addition, JUMP produces a tab-delimited Excel file displaying basic
search parameters, MS/MS data summary, and a PSM summary, as
well as multiple charts for data visualization.

Sample Datasets—Four datasets were used to evaluate the JUMP
algorithm. The first dataset was collected from a typical LC-MS/MS
run of a digested protein sample of a human myeloma cell line
(ANBLS6, provided by Dr. Kenneth C. Anderson at Harvard Medical
School) using our previously optimized protocol (47). Trypsinized cell
lysate (~1 pg) was loaded on a reverse phase column (75 mm X 10
cm, 2.7-um HALO C, 4 resin) and eluted during a 60-min gradient of
10% to 40% solvent B (solvent A, 0.1% formic acid; solvent B, 0.1%
formic acid, 70% acetonitrile; flow rate of 300 nl/min). The second
dataset was obtained from a phosphopeptide-enriched sample of the
same starting cell lysate. Phosphopeptides were enriched from the
desalted total peptides (~100 ng) by TiO, (48) and analyzed in a
30-min LC-MS/MS run. The third dataset was from a long-gradient
LC/LC-MS/MS analysis of a human sample. The tissue lysates were
digested, and the resulting peptides were subjected to basic pH
reverse phase chromatography to generate 10 fractions. Each frac-
tion was then analyzed via long-gradient acidic-pH LC-MS/MS. The
forth dataset was from mouse samples labeled with tandem mass tag
reagents (Thermo Fisher Scientific). Phosphopeptides were isolated
from the pooled sample by TiO, (48) and analyzed in a 6-h LC-MS/MS
run. The eluted peptides in the four experiments were analyzed on a
Q Exactive mass spectrometer (Thermo Fisher Scientific) with one MS
scan (35,000 resolution and 1 X 10° automatic gain control (AGC)
target) and up to 20 data-dependent MS/MS scans. Instrument meth-
ods with parameters are available in raw files that can be downloaded
from our lab’s website.

Data Analysis—The four datasets were used for tuning JUMP pa-
rameters and comparing the performance of JUMP (version 1.0.55),
SEQUEST (Proteome Discoverer 1.3), Mascot (version 2.3.0), PEAKS
DB (PEAKS 7.0, build 20140321), and InsPecT (version 20120109).
MS raw files were converted into mzXML format as input for all
programs. The first three datasets were searched against the UniProt
human database with 71,809 protein entries, and the forth dataset
used the UniProt mouse database with 55,744 entries. Common
parameters included a precursor ion mass tolerance of 15 ppm, a
product ion mass tolerance of 0.02 Da, fully tryptic restriction, up to
two miscleavages, and dynamic modifications of oxidized Met
(+15.99492 Da). For the two phosphorylation datasets, additional
dynamic modifications on serine, threonine, and tyrosine (+79.96633
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Fic. 1. The JUMP algorithm. A, overview of the JUMP algorithm. JUMP starts with a raw data file or an mzXML file and then performs MS1
and MS2 preprocessing for each spectrum. Both MS1 precursor ion mass and sequence tags derived from an MS2 spectrum are used to filter
peptide sequences in the database. After pattern matching, JUMP generates a final score, the J score, to rank all identified peptides. B, an
example to illustrate two-step filtering of theoretical peptides in the JUMP algorithm: (i) filtered by a precursor mass of 1402.651 Da within a
mass tolerance range (e.g. 10 ppm); (i) filtered by a sequence tag. C, an example of JUMP output. The J score is generated by integrating the

tag E score and peptide E score.

Da) were used. For the tandem-mass-tag-labeled dataset, fixed mod-
ifications on the N terminus and lysine (+229.162932 Da) were also
used. During MS/MS preprocessing, the top 10 peaks in each window
of 100 m/z were selected for SEQUEST, Mascot, and JUMP. The
function of mass correction was selected for PEAKS DB. For other
parameters, the default settings were used. After searching, the
PSMs were processed by filtering procedures provided by individual
programs (e.g. Peptide Validator for SEQUEST, Percolator for Mas-
cot, PEAKS studio for PEAKS DB, and ComputeFDR for InsPecT).

RESULTS AND DISCUSSION

Evaluation of False Discovery Rate in JUMP via the Target-
Decoy Strategy—JUMP is designed as a hybrid algorithm that
performs de novo tag sequencing and matches tandem MS
spectra to a theoretical database (Fig. 1). To assess false
PSMs, we adapted the commonly used target-decoy strategy
(23-26) in which random PSMs are assumed to have equal
probabilities of being assigned to target and decoy data-
bases. We tested whether this strategy is suitable for JUMP
by searching a null dataset. The null dataset was falsified by
increasing the precursor ion mass of each MS/MS spectrum
by 100 Da. As expected, JUMP generated almost equal targets
(n = 6588) and decoys (n = 6599) (supplemental Fig. S3A) and

similar distributions of PSM scores (i.e. J scores) in these
targets and decoys (supplemental Fig. S3B). These results
demonstrate that the target-decoy strategy is applicable for
evaluating the FDR of JUMP-derived PSMs.

De Novo Tag Generation from MS/MS Spectra—The JUMP
algorithm generates de novo amino acid tags from high-
resolution MS/MS spectra (Fig. 2). The tag number derived
from one spectrum varies depending on the spectral quality.
In our first dataset, a standard 1-h LC-MS/MS run of total cell
lysate, the tag number was in the range from 0 to hundreds,
with a median of 53 (Fig. 3A). It should be noted that over-
lapping amino acid sequences were counted as different tags
(Fig. 2A). The vast majority of spectra (98.8%) were able to
generate at least one sequence tag.

JUMP ranks these tags in the same MS/MS scan for sub-
sequent selection during the database search. An ideal tag
scoring method should sort the most promising tags to the
top of the list, which reduces database search time and
improves peptide scoring, because the tag scores are also
considered during peptide scoring. Two previously reported
methods were examined: the Wilcoxon rank sum test (40),
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Fic. 2. Tag inferred from MS/MS spectra of high quality (A) and low quality (B). The top panel shows original MS/MS spectra, the middle
panel shows preprocessed spectra after peak filtering and intensity normalization, and the bottom panel shows the top six tags. The JUMP
program assembles the tag in two reading orders, corresponding to possible b or y ion series.

which scores a tag based on the signal intensity rank of its
related ions, and the hypergeometric test (15, 43), based on
the mass of the ions. As the two parameters (i.e. ion intensity  performance with that of the two reported methods. Although
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Fic. 3. Tag derived by JUMP. A, distribution of the tag number for individual MS/MS spectra in the first dataset. B, pseudo-receiver operating
characteristic curves for the comparison of three tag scoring methods: the Wilcoxon rank sum test (“rank”), the hypergeometric test (“hyper”), and
the combined method (“comb”). C, the number of expected true PSMs influenced by the number of top tags selected for the database search.
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Fic. 4. The effect of tag length on peptide identification. A,
distribution of the number of identified target and decoy PSMs with
different tag lengths. B, J score distributions for target and decoy
PSMs with different tag lengths.

the hypergeometric test showed a better result than the Wil-
coxon rank sum test, our combined method yielded the best
outcome, identifying 1.8% and 6.1% more PSMs than the
other two methods, respectively, at a 1% FDR (Fig. 3B).

We then determined how many top tags are needed to
achieve maximal sensitivity in the peptide identification (Fig.
3C). Interestingly, the use of the top five tags was sufficient to
reach the plateau, suggesting that our tag scoring function
works efficiently. Relative to the non-tag search (e.g. tag
number set to 0), the inclusion of tags dramatically increased
the anticipated number of true PSMs (from 4800 to 6000),
suggesting that the inclusion of tags improves the perfor-
mance of the database search.

To further dissect the role of tags in database searches, we
analyzed the relationship between the lengths of amino acid
tags and the target-decoy PSMs (Fig. 4A) or J score distribu-
tion (Fig. 4B). When no tag was identified, the related spectra

were of low quality, resulting in nearly equal numbers of target
and decoy PSMs and indistinguishable distribution of target
and decoy J scores, suggesting that JUMP can judge MS/MS
spectral quality by tags, and the non-tag spectra may be
discarded without a loss of sensitivity. As expected, the PSMs
supported by long tags were likely to be correct and have high
J scores. For example, in PSMs with two amino acid tags,
~50% of target PSMs were false assignments. In PSMs with
at least five amino acid tags, no decoy PSM was identified.
Several prevalent hybrid methods, such as GutenTag (37) and
InsPecT (38), require a minimal tag length of three amino acids
in order to directly extract peptide or protein sequences from
a database without filtering by precursor ion mass. By con-
trast, JUMP uses the list of tag sequences to query candidate
peptides after filtering by precursor ion mass. In this run,
JUMP identified 9.6% (630/6546) PSMs with supporting tags
of less than three amino acids. Therefore, JUMP is able to use
tags as short as one amino acid to improve identification
sensitivity.

Performance Comparison of JUMP, SEQUEST, and Mas-
cot—To fully assess the performance (i.e. sensitivity and
specificity) of JUMP, we processed the same dataset with
JUMP, SEQUEST, and Mascot, as the other two search en-
gines are commercially available and widely used in the pro-
teomics community. In a pseudo-receiver operating charac-
teristic plot (accepted PSMs versus FDR), JUMP clearly had
the best performance. At the threshold of 1% FDR, JUMP
identified 6352 PSMs, 28.7% and 33.2% more than
SEQUEST and Mascot, respectively (Fig. 5A). A close exam-
ination revealed that the JUMP score distinguished between
targets and decoys better than the other two programs (Figs.
5B-5D). In SEQUEST, another & correlation score (dC,) indi-
cates the Xcorr difference between the first and second
matches of the same spectrum, which reflects the specificity
of peptide scoring. We computed a similar score in JUMP
(dJ,) to distinguish targets and decoys (Fig. 5E). A direct
comparison of dC,, and dJ,, distributions also demonstrated
higher specificity of the dJ,, score (Fig. 5F).

The improvement of specificity in JUMP may be attributed
to two main features: (i) in addition to precursor ion mass
filtering, the peptide database is subjected to tag filtering,
which markedly reduces the search space for random match-
ing; (ii) the J score incorporates both the pattern matching
score and the tag score, emphasizing the contribution of tags,
because random matched peaks are more likely to be dis-
persed along the full spectrum but rarely generate de novo
tags. Indeed, the Yates group originally reported this rule for
manual validation of PSMs, which required “some continuity
to the b or y ion series” (49) that generates peptide tags.

Identification of Multiple Precursors in Mixed MS/MS Spec-
tra—When complex peptide samples are analyzed via LC-
MS/MS, a significant number of peptides with close m/z val-
ues are co-eluted, leading to co-isolation and mixed MS/MS
spectra (18, 50, 51). Several search engines, such as Androm-
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eda (18) and ProblDtree (51), introduced a function to allow
the second peptide identification. In JUMP, we implemented
a similar feature to select multiple precursor ions within the
isolation window for database searches. For instance, in one
precursor isolation window (Fig. 6A), the strongest precursor
ion was triply charged, and its percentage of precursor inten-
sity was 77%. The second precursor ion was doubly charged,
and its percentage of precursor intensity was 23%. Both ions
were isolated during fragmentation to produce a mixed
MS/MS spectrum. Users can define multiple precursor ions

by setting a maximal precursor number for one MS/MS spec-
trum or the minimal percentage of precursor intensity. Rela-
tive to a search result with only one precursor ion per MS/MS
spectrum, multiple precursor ion selection increased the
PSMs by 18.3% at 1% FDR (Fig. 6B). The identified PSMs
were primarily contributed by the first precursor ions (Figs. 6C
and 6D).

Partial de Novo Sequencing of Novel Peptides Not Present
in the Database—In some cases, tandem MS spectra lead to
highly confident tags with long amino acid sequences but
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cannot be matched to any theoretical peptides. It is likely that
the corresponding peptides are simply not present in the
searched peptide database, possibly because of unconven-
tional protease cleavage, novel modifications, unknown pro-
tein mutations, or protein contaminants that are not included
in the database. In the first dataset analysis, 712 MS/MS
spectra failed to identify peptides, of which 214 spectra did
not generate any tag because of poor quality, and the remain-
ing spectra generated tags of various lengths. We manually
examined 13 spectra with the top tags of at least eight amino
acids and performed a BLAST search against the NCBI non-
redundant human database. These tags were mapped to
proteins with missense mutations. For example, the top-
ranked tag with 14 amino acids was derived from a high-
quality spectrum (Fig. 7A), mapped to the protein PSMD13
with one mismatch (Figs. 7B and 7C). Our whole-genome
sequencing and RNA-sequencing data further confirmed the
missense mutation (supplemental Figs. S4A and S4B). Be-
cause JUMP implements partial de novo sequencing, it is
possible to derive peptides with amino acid mutations and

A K.IEDVGS@DEEDDSGK.D B K.QKS@DAEEDGGTVSQEEEDR.K

[457.23]GS@DEED[387.17) [550.19] DGGTVSQEI[548.23]

C K.DRQS@PLHGNHITISHTQATGSR.S
HTQ 1490.52]

FiGc. 7. JUMP-derived tags facilitate the assignment of modifi-
cation sites. A, the modification site in a tag. B, the modifiable site in
a tag, but not modified. C, the modifiable site not in the tag. The
flanking masses of the tag provide restrictions for site assignment.

[1303.67]

novel post-translational modifications for those unassigned
spectra of high quality (e.g. with long tags).

Tag-based Assignment of Post-translational Modification
Sites—To unambiguously assign the modified sites in peptide
sequences, several programs have been developed to re-
score local product ions to improve the determination of
modification sites (52, 53). Similarly, JUMP generates partial
de novo tags that provide local product ion information to
assign modification sites by three rules: (i) the modified site
may be directly found inside a tag (Fig. 8A); (ii) a dynamically
modifiable residue may be included in a tag, but it is not
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modified (Fig. 8B), which excludes this possibility; and (iii)
the modifiable site does not present in a tag, but the flanking
masses of the tag narrow down the options for site assign-
ment (Fig. 8C). We applied JUMP to search a phosphorylation
dataset of 1836 MS/MS spectra and identified 698 PSMs and
494 peptides (1% FDR), including 673 phospho-PSMs and
487 phosphopeptides. In these phosphopeptides, 136, 172,
and 179 peptides were supported by the three rules, respec-
tively. Because JUMP yields de novo tags in assigning mod-
ifications, we believe that the program can provide reliable
results to distinguish ambiguous peptides.

Evaluation of JUMP and Other Programs Using Large Da-
tasets— Advances in MS technology substantially increase scan
speed, enlarge raw file size, and demand rapid processing by
database search engines. For example, we routinely acquire
hundreds of thousands of data-dependent MS/MS spectra in
single long-gradient LC-MS/MS runs. It would be valuable for a
search engine to be able to search such datasets with high
sensitivity and specificity in a relatively short time. Thus, we
used the third large dataset of 1,718,768 MS/MS spectra (Fig. 9)
to evaluate the performance of two commonly used programs
(SEQUEST and Mascot) and three hybrid programs (JUMP,
InsPecT, and PEAKS DB). JUMP identified 658,392 PSMs,
which was 26.9% and 32.1% more than SEQUEST and Mas-
cot, respectively. In addition, JUMP identified 5.3% and 37.8%
more PSMs than PEAKS DB and InsPecT, respectively. Similar
results were obtained when we compared identified peptides.

In addition, we further evaluated JUMP performance on a
large-scale phosphorylation dataset of 108,654 MS/MS spec-
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Fic. 9. Performance comparison of five programs using a large-
scale dataset. The human dataset of LC/LC-MS/MS analysis con-
tained ~1.7 million MS/MS spectra. The accepted PSMs and pep-
tides at 1% FDR are shown.

tra. JUMP identified 17,937 phospho-PSMs and 6542 phos-
phopeptides, and these identifications included 18.2% more
phospho-PSMs and 22.1% more phosphopeptides than
those made by SEQUEST, as well as 25.9% more phospho-
PSMs and 36.7% more phosphopeptides than identified with
Mascot (supplemental Fig. S5).

CONCLUSION

We have demonstrated that JUMP is a sensitive and spe-
cific database search method for peptide identification. JUMP
is able to achieve better sensitivity and specificity than other
search engines such as SEQUEST, Mascot, InsPecT, and
PEAKS DB. A number of features contribute to the strong
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performance of JUMP: (i) JUMP uses a novel algorithm for tag
scoring that combines the peak intensity-based score and the
peak position-based score; (i) JUMP generates a J score that
merges the local tag score and the global pattern matching
score; (iii) JUMP uses tags as short as one amino acid; and (iv)
JUMP is designed as a modular program for high-perfor-
mance computing systems. In addition, JUMP is capable of
identifying multiple candidate peptides from mixture spectra
and producing de novo sequence tags. In summary, we have
demonstrated that JUMP is an independent and complemen-
tary tool for use with existing software for identifying peptide/
protein sequences from MS/MS raw data.
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